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The Linux kernel
User-space application X User-space application Y

Low level libraries (i.e: glibc)

User space

Kernel space

System call interface

Virtual file system Networking subsystem Scheduler Memory manager….

Device drivers
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Downstream, Upstream and Mainline

RHEL

Fedora Distro Y

Mainline

Distro X

Fedora derivatives

Distro Z

Enterprise Z Distro Z derivatives
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Linux Development Process
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Linux development process

Linux is the largest collaborative software project 
in the world.



7

Linux development process

Due to the scale of the community, each 
maintainer has their own optimized workflow.



8

Linux development process

It's a very costly operation for maintainers to 
diverge from their workflow.
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Linux development process

So even when there is a single community and 
documented development process...
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Linux development process

...there isn't a single way to submit a patch.
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Linux development process

There are different ways to submit patches to 
different subsystems.
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Linux development process

“Linux is evolution, not intelligent design”

- Linus Torvalds
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Linux development process

● Most projects use a feature based release model
● Linux instead uses a time based release model



14

Linux kernel release cycle

v5.4-rc1 v5.4

Release Merge window Pre-release (-rc) cycle

v5.4-rc2v5.3 v5.4-rcN

Release
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Linux kernel trees

● linux.git: Linus Torvalds' tree

– git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git 

● linux-stable.git: contains previous versions on which fixes are backported

– git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

● subsystem trees: each maintainer has a tree used for development

● linux-next.git: integrates all the subsystem maintainer trees for testing

– git://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
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A patch flow to mainline

Patch posted Acked? Patch merged

Yes

No

Nacked? Patch dropped

Yes

Fix issues

No
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A patch flow to mainline

Submitter SubmitterSubmitterSubmitterSubmitter

Maintainer MaintainerMaintainer

Linus Torvalds

Maintainer
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A patch flow to mainline

Submitter SubmitterSubmitterSubmitterSubmitter

Maintainer MaintainerMaintainer

Linus Torvalds

Maintainer

linux-next
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Contribution Steps
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Contribution Steps

Early research

Patch preparation

Getting feedback

Patch posting

Patches landed
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Contribution Steps

Early research

Patch preparation

Getting feedback

Patch posting

Patches landed



22

Early Research

● The development process must be understood 
before preparing a patch.

● This is one of the most important steps for a 
successful contribution.

● This is a must when contributing to Linux for the 
first time.

● This is also recommended even if you have prior 
experience, when contributing to a new subsystem 
for the first time
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Early Research - Documentation

● The development process and the contribution 
process is well documented.
– Documentation/process/development-process.rst
– Documentation/process/howto.rst
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Early Research - Preferences

● Subsystems maintainers can have their own 
preferences.

● Learn the subsystem conventions for easier 
interaction.

● Look at the MAINTAINERS file to know who are 
the maintainers of a given subsystem.

● Search the subsystem mailing list archives for 
older threads to learn these unwritten rules.
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Early Research - Preferences

● Some subsystems have their own documentation:
– Documentation/devicetree/bindings/submitting-

patches.txt
– Documentation/networking/netdev-FAQ.txt
– http://www.linuxtv.org/wiki/index.php/

Development:_How_to_submit_patches
● Learning these preferences can feel like wasted 

time, but it really pays off in the long run.
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Contribution Steps

Early research

Patch preparation

Getting feedback

Patch posting

Patches landed
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Patch Preparation - Format

● Make sure patches conform to the canonical 
patch format.

● This is also very well documented.
– Documentation/process/submitting-patches.rst

● git format-patch
● Check the git log to use a proper subject line
● Include Certificate of Origin (Signed-off-by)

– http://developercertificate.org/
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Patch Preparation –  Changelog

● Good commit messages explain why a change is 
needed, not what is changed.
– The patch contents can answer what but not why

● What is in the commit message ends in the git tree
● Comments not suitable for the changelog should 

be included between a “---” marker line and the 
actual diff
– For example patch history and changes by revision
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Tags in the commit message

● Signed-off-by: the signer was involved in the development of the patch or in 
the patch's delivery path

● Reported-by: gives credit to people who find bugs and report them

● Tested-by: indicates the patch has been tested by that person

● Reviewed-by: indicates the patch has been reviewed by that person

● Acked-by: a person was not directly involved in the preparation or handling 
of of a patch but wishes to signify and record their approval

● The full list is in Documentation/process/submitting-patches.rst
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Patch Preparation – Changes Split

● Split the changes in reasonable chunks so they 
can be reviewed easily.

● Patches should do only one thing, each logical 
change should be separated.

● Patches that can be grouped logically, should 
be posted as a patch series.

● A patch series should have a specific purpose.
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Patch Preparation – Changes Split

● Patch series should not do too many things at 
once, it's better to split.

● Patches in a series should be added to be applied 
incrementally.

● Individual patches should not break bisect ability 
(for both build and run time).

● If a series contains fixes, these should be first. 
This allows them to be applied even if there are 
discussions about the other patches
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Patch Preparation – Cover Letter

● Patch series should have a cover letter (PATCH 
0/N) that explains what the series is about, how 
it was tested, etc.
– git format-patch --cover-letter

● The cover letter should explain the 
dependencies between the patches and which 
patches should be applied by whom.
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Patch Preparation – Dependencies

● If possible, all patches should go through the same tree.
● Or, let Kconfig handle the dependency (i.e: A depends on B). 
● Make it clear if there are cross subsystem dependencies and 

indicate what these are.
● Cross subsystem dependencies (different ways to solve the 

conflict)
– Split by kernel releases
– Get Ack from maintainers and push everything through a single tree
– Shared immutable branches between maintainers containing the 

dependencies patches
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Patch Preparation - Tools

● git format-patch
● ./scripts/checkpatch.pl
● coccinelle
● sparse
● smatch
● cppcheck
● git rebase -i –exec
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Contribution Steps

Early research

Patch preparation

Getting feedback

Patch posting

Patches landed
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Patch Posting

● Documentation/process/submit-checklist.rst
● Use git send-email since it does the right thing.
● If not sure about the patches, add RFC to the 

patches subject.
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Patch Posting – Who to CC

● It’s important to think about who should receive 
the patches and who shouldn’t.

● The MAINTAINERS file tells the maintainers 
and mailing list to send the patch to.

● The get_maintainer.pl script suggests a cc list.
● This it’s only a suggestion, don’t follow it blindly.
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Patch Posting – Who to CC

● The decision to copy all patches in a series to 
all recipients is made on a case by case basis.

● Some people don’t like to be copied on random 
patches.

● Others prefer to get the entire series to have 
more context.

● Research the maintainers preferences to see 
what fits better with their workflow.
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Patch Posting – CC'ing Cover 
Letter

● For patch series, the cover letter should be sent 
to all people receiving the patches.

● This way, everyone will have enough context to 
understand the patches.
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Patch Posting – When to Post

● Maintainers also have different preferences on 
when patches should be posted.

● Some maintainers expects submitters to follow the 
development process, i.e:
– Only post bug fixes during the -rc cycle
– Not post features during the merge window

● Other maintainers don't expect developers to know 
the dev process and picks both fixes and new 
features at any time.
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Patch Posting – Patman

● Developed by Simon Glass for the u-boot project
● Tool to automate patch formatting, check and 

submission
– http://git.denx.de/?p=u-boot.git;a=blob;f=tools/patman/

README
● Useful for any projects where the submission 

process includes posting patches
● Converts a git branch in a set of patches and post 

them
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Patch Posting – Patman

● Behavior controlled by a set of tags in the 
commits

● Creates cover letter, logs, etc from metadata
● Invokes checkpatch.pl to verify the patches
● Calls get_maintainer.pl to fill cc list (or use tags 

in commits)
● Supports dry run option to simulate what would 

be done
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Patch Posting – Patman Workflow

● For each patch series revision, the output will 
be consistent

● Reduces an unnecessary source of errors and 
annoyances versus when it's handed manually 

Create branch Commits + tags Run patman
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Patch Posting – Patman Tags

● Series-to: email address or alias to send this patch series
● Series-cc: email address or alias to copy this patch series
● Series-version: set the version of the series. Will add a v<n> to the 

patch subject
● Series-prefix: Set the patches prefix (i.e: RFC or RESEND)
● Cover-letter: Content of the cover letter, fist line is the subject
● Cover-letter-cc: email address or alias to copy the cover letter
● Series-changes: Changelog for patch series revision
● Commit-notes: Notes for each commit, appear after “---” cut
● Patch-cc: email address or alias to copy this patch
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Patch Posting – Patman Options

● patman command line arguments
– patman -n (dry run)
– patman -c<n> (use the n first commits)
– patman -s<n> (skit the first n commits)
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Contribution Steps

Early research

Patch preparation

Getting feedback

Patch posting

Patches landed
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Getting Feedback – Asking for it

● Give maintainers at least a week to answer.
● Some expect more time, so research their preferences.
● After a reasonable time, an action could be taken:

– Some maintainers expect you to ask in the patch 
thread

– Others maintainers expect the patch to just be resent
● This may depend on whether or not the subsystem 

uses patchwork.



49

Getting Feedback – Answer Inline

● Don't top post! Always answer the emails in-line.
● When discussing your patches remove 

unnecessary context from the email.
● People don’t want to scroll hundred of lines to read 

an answer of a couple of lines.
● But keep enough context so people answering 

after some days or weeks, can remember what the 
discussion was about.
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Getting Feedback – Patch 
Revisions 

● After feedback has been addressed, a new 
revision should be posted.

● A version v<n> should be included in the subject 
(i.e: [PATCH v2]).

● git format-patch -v2
● A log of the changes should be added between 

“---” and the diff.
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Getting Feedback – Patch 
Revisions 

● Patches that have been ignored and are resent 
should have a RESEND prefix

● git format-patch --subject-prefix="RESEND 
PATCH"

● If a new patch is added to a series, mention it in 
the changelog.

● Patman makes all this easy (Series-version, 
Series-changes, Series-prefix).
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Getting Feedback – Sending a new 
version

● Wait some time before sending a new version.
● It's possible that maintainers didn't have time to 

review yet.
● Sending too quickly could create more work for 

them.
● But could be that maintainers are not answering 

because a new version is coming.
● Again, this could depend on the maintainer so 

research the preference.
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Contribution Steps

Early research

Patch preparation

Getting feedback

Patch posting
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Patches Landed

● The work is not done when patches get merged.
● Patches will get a lot of manual and automated 

build & boot testing (kernelci, 0-day, etc).
● Make sure to be responsive in a timely manner if 

issues are found.
● Don't post patches and then disappear if bugs are 

found after merging.
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Patches Landed

● Open source is about trust and this has to be earned.
● Maintainers expects submitters to be trustable.
● If that's not the case, they will be less fond to merge 

patches in future.
● It can affect the reputation of both the developer and 

the company they work for.
● So keep an eye to the subsystem you contributed 

and be ready to fix issues if these are found.
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Questions?
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Thank You!
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