
1

Linux kernel development process

Javier Martinez Canillas
Software Engineer, Red Hat

javierm@redhat.com

mailto:javierm@redhat.com

2

Agenda

● The Linux kernel
● Downstream, Upstream and Mainline
● Linux development process
● Contribution steps

– Pitfalls
– Good practices
– Tools

3

The Linux kernel
User-space application X User-space application Y

Low level libraries (i.e: glibc)

User space

Kernel space

System call interface

Virtual file system Networking subsystem Scheduler Memory manager….

Device drivers

4

Downstream, Upstream and Mainline

RHEL

Fedora Distro Y

Mainline

Distro X

Fedora derivatives

Distro Z

Enterprise Z Distro Z derivatives

5

Linux Development Process

6

Linux development process

Linux is the largest collaborative software project
in the world.

7

Linux development process

Due to the scale of the community, each
maintainer has their own optimized workflow.

8

Linux development process

It's a very costly operation for maintainers to
diverge from their workflow.

9

Linux development process

So even when there is a single community and
documented development process...

10

Linux development process

...there isn't a single way to submit a patch.

11

Linux development process

There are different ways to submit patches to
different subsystems.

12

Linux development process

“Linux is evolution, not intelligent design”

- Linus Torvalds

13

Linux development process

● Most projects use a feature based release model
● Linux instead uses a time based release model

14

Linux kernel release cycle

v5.4-rc1 v5.4

Release Merge window Pre-release (-rc) cycle

v5.4-rc2v5.3 v5.4-rcN

Release

15

Linux kernel trees

● linux.git: Linus Torvalds' tree

– git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

● linux-stable.git: contains previous versions on which fixes are backported

– git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

● subsystem trees: each maintainer has a tree used for development

● linux-next.git: integrates all the subsystem maintainer trees for testing

– git://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git

16

A patch flow to mainline

Patch posted Acked? Patch merged

Yes

No

Nacked? Patch dropped

Yes

Fix issues

No

17

A patch flow to mainline

Submitter SubmitterSubmitterSubmitterSubmitter

Maintainer MaintainerMaintainer

Linus Torvalds

Maintainer

18

A patch flow to mainline

Submitter SubmitterSubmitterSubmitterSubmitter

Maintainer MaintainerMaintainer

Linus Torvalds

Maintainer

linux-next

19

Contribution Steps

20

Contribution Steps

Early research

Patch preparation

Getting feedback

Patch posting

Patches landed

21

Contribution Steps

Early research

Patch preparation

Getting feedback

Patch posting

Patches landed

22

Early Research

● The development process must be understood
before preparing a patch.

● This is one of the most important steps for a
successful contribution.

● This is a must when contributing to Linux for the
first time.

● This is also recommended even if you have prior
experience, when contributing to a new subsystem
for the first time

23

Early Research - Documentation

● The development process and the contribution
process is well documented.
– Documentation/process/development-process.rst
– Documentation/process/howto.rst

24

Early Research - Preferences

● Subsystems maintainers can have their own
preferences.

● Learn the subsystem conventions for easier
interaction.

● Look at the MAINTAINERS file to know who are
the maintainers of a given subsystem.

● Search the subsystem mailing list archives for
older threads to learn these unwritten rules.

25

Early Research - Preferences

● Some subsystems have their own documentation:
– Documentation/devicetree/bindings/submitting-

patches.txt
– Documentation/networking/netdev-FAQ.txt
– http://www.linuxtv.org/wiki/index.php/

Development:_How_to_submit_patches
● Learning these preferences can feel like wasted

time, but it really pays off in the long run.

26

Contribution Steps

Early research

Patch preparation

Getting feedback

Patch posting

Patches landed

27

Patch Preparation - Format

● Make sure patches conform to the canonical
patch format.

● This is also very well documented.
– Documentation/process/submitting-patches.rst

● git format-patch
● Check the git log to use a proper subject line
● Include Certificate of Origin (Signed-off-by)

– http://developercertificate.org/

28

Patch Preparation – Changelog

● Good commit messages explain why a change is
needed, not what is changed.
– The patch contents can answer what but not why

● What is in the commit message ends in the git tree
● Comments not suitable for the changelog should

be included between a “---” marker line and the
actual diff
– For example patch history and changes by revision

29

30

Tags in the commit message

● Signed-off-by: the signer was involved in the development of the patch or in
the patch's delivery path

● Reported-by: gives credit to people who find bugs and report them

● Tested-by: indicates the patch has been tested by that person

● Reviewed-by: indicates the patch has been reviewed by that person

● Acked-by: a person was not directly involved in the preparation or handling
of of a patch but wishes to signify and record their approval

● The full list is in Documentation/process/submitting-patches.rst

31

Patch Preparation – Changes Split

● Split the changes in reasonable chunks so they
can be reviewed easily.

● Patches should do only one thing, each logical
change should be separated.

● Patches that can be grouped logically, should
be posted as a patch series.

● A patch series should have a specific purpose.

32

Patch Preparation – Changes Split

● Patch series should not do too many things at
once, it's better to split.

● Patches in a series should be added to be applied
incrementally.

● Individual patches should not break bisect ability
(for both build and run time).

● If a series contains fixes, these should be first.
This allows them to be applied even if there are
discussions about the other patches

33

Patch Preparation – Cover Letter

● Patch series should have a cover letter (PATCH
0/N) that explains what the series is about, how
it was tested, etc.
– git format-patch --cover-letter

● The cover letter should explain the
dependencies between the patches and which
patches should be applied by whom.

34

Patch Preparation – Dependencies

● If possible, all patches should go through the same tree.
● Or, let Kconfig handle the dependency (i.e: A depends on B).
● Make it clear if there are cross subsystem dependencies and

indicate what these are.
● Cross subsystem dependencies (different ways to solve the

conflict)
– Split by kernel releases
– Get Ack from maintainers and push everything through a single tree
– Shared immutable branches between maintainers containing the

dependencies patches

35

Patch Preparation - Tools

● git format-patch
● ./scripts/checkpatch.pl
● coccinelle
● sparse
● smatch
● cppcheck
● git rebase -i –exec

36

Contribution Steps

Early research

Patch preparation

Getting feedback

Patch posting

Patches landed

37

Patch Posting

● Documentation/process/submit-checklist.rst
● Use git send-email since it does the right thing.
● If not sure about the patches, add RFC to the

patches subject.

38

Patch Posting – Who to CC

● It’s important to think about who should receive
the patches and who shouldn’t.

● The MAINTAINERS file tells the maintainers
and mailing list to send the patch to.

● The get_maintainer.pl script suggests a cc list.
● This it’s only a suggestion, don’t follow it blindly.

39

Patch Posting – Who to CC

● The decision to copy all patches in a series to
all recipients is made on a case by case basis.

● Some people don’t like to be copied on random
patches.

● Others prefer to get the entire series to have
more context.

● Research the maintainers preferences to see
what fits better with their workflow.

40

Patch Posting – CC'ing Cover
Letter

● For patch series, the cover letter should be sent
to all people receiving the patches.

● This way, everyone will have enough context to
understand the patches.

41

Patch Posting – When to Post

● Maintainers also have different preferences on
when patches should be posted.

● Some maintainers expects submitters to follow the
development process, i.e:
– Only post bug fixes during the -rc cycle
– Not post features during the merge window

● Other maintainers don't expect developers to know
the dev process and picks both fixes and new
features at any time.

42

Patch Posting – Patman

● Developed by Simon Glass for the u-boot project
● Tool to automate patch formatting, check and

submission
– http://git.denx.de/?p=u-boot.git;a=blob;f=tools/patman/

README
● Useful for any projects where the submission

process includes posting patches
● Converts a git branch in a set of patches and post

them

43

Patch Posting – Patman

● Behavior controlled by a set of tags in the
commits

● Creates cover letter, logs, etc from metadata
● Invokes checkpatch.pl to verify the patches
● Calls get_maintainer.pl to fill cc list (or use tags

in commits)
● Supports dry run option to simulate what would

be done

44

Patch Posting – Patman Workflow

● For each patch series revision, the output will
be consistent

● Reduces an unnecessary source of errors and
annoyances versus when it's handed manually

Create branch Commits + tags Run patman

45

Patch Posting – Patman Tags

● Series-to: email address or alias to send this patch series
● Series-cc: email address or alias to copy this patch series
● Series-version: set the version of the series. Will add a v<n> to the

patch subject
● Series-prefix: Set the patches prefix (i.e: RFC or RESEND)
● Cover-letter: Content of the cover letter, fist line is the subject
● Cover-letter-cc: email address or alias to copy the cover letter
● Series-changes: Changelog for patch series revision
● Commit-notes: Notes for each commit, appear after “---” cut
● Patch-cc: email address or alias to copy this patch

46

Patch Posting – Patman Options

● patman command line arguments
– patman -n (dry run)
– patman -c<n> (use the n first commits)
– patman -s<n> (skit the first n commits)

47

Contribution Steps

Early research

Patch preparation

Getting feedback

Patch posting

Patches landed

48

Getting Feedback – Asking for it

● Give maintainers at least a week to answer.
● Some expect more time, so research their preferences.
● After a reasonable time, an action could be taken:

– Some maintainers expect you to ask in the patch
thread

– Others maintainers expect the patch to just be resent
● This may depend on whether or not the subsystem

uses patchwork.

49

Getting Feedback – Answer Inline

● Don't top post! Always answer the emails in-line.
● When discussing your patches remove

unnecessary context from the email.
● People don’t want to scroll hundred of lines to read

an answer of a couple of lines.
● But keep enough context so people answering

after some days or weeks, can remember what the
discussion was about.

50

Getting Feedback – Patch
Revisions

● After feedback has been addressed, a new
revision should be posted.

● A version v<n> should be included in the subject
(i.e: [PATCH v2]).

● git format-patch -v2
● A log of the changes should be added between

“---” and the diff.

51

Getting Feedback – Patch
Revisions

● Patches that have been ignored and are resent
should have a RESEND prefix

● git format-patch --subject-prefix="RESEND
PATCH"

● If a new patch is added to a series, mention it in
the changelog.

● Patman makes all this easy (Series-version,
Series-changes, Series-prefix).

52

Getting Feedback – Sending a new
version

● Wait some time before sending a new version.
● It's possible that maintainers didn't have time to

review yet.
● Sending too quickly could create more work for

them.
● But could be that maintainers are not answering

because a new version is coming.
● Again, this could depend on the maintainer so

research the preference.

53

Contribution Steps

Early research

Patch preparation

Getting feedback

Patch posting

Patches landed

54

Patches Landed

● The work is not done when patches get merged.
● Patches will get a lot of manual and automated

build & boot testing (kernelci, 0-day, etc).
● Make sure to be responsive in a timely manner if

issues are found.
● Don't post patches and then disappear if bugs are

found after merging.

55

Patches Landed

● Open source is about trust and this has to be earned.
● Maintainers expects submitters to be trustable.
● If that's not the case, they will be less fond to merge

patches in future.
● It can affect the reputation of both the developer and

the company they work for.
● So keep an eye to the subsystem you contributed

and be ready to fix issues if these are found.

56

Questions?

57

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

